CS451 (Distributed Algorithms): Lattice Agreement

1 SYSTEM MODEL & PRELIMINARIES

Processes. We assume a static system ¥ = {Py, ..., Py} of n = 2f + 1 processes among which some processes can
fail by crashing. A process that fails is said to be faulty; a non-faulty process is correct. We assume that at most f
processes can fail. Processes communicate by exchanging messages over an authenticated point-to-point network. The
communication network is reliable: if a correct process sends a message to a correct process, the message is eventually

received.

Asynchrony. The processes are asynchronous: a process proceeds at its own arbitrary (and non-deterministic) speed.
Moreover, the communication network is asynchronous: message delays are finite, but arbitrarily big. In other words, if
a correct process sends a message to another correct process, it is not known when the message will be received; it is

just known that the message will eventually be received.

Lattice agreement. Let V denote the set of values. The lattice agreement problem allows processes to agree on
“similar” decisions despite failures. The lattice agreement problem exposes the following interface:
e request propose(I C V): a process proposes a set I.
e indication decide(O C V): a process decides a set O.
The proposal of a process P; is denoted by I;, whereas the decision of a process P; is denoted by O;.
The lattice agreement problem requires the following properties to be satisfied:
o Validity: Let a process P; decide a set O;. Then:
- I; € O;, and

-0;c U I
Jjel1n]
e Consistency: Let a process P; decide a set O; and let a process P; decide a set O;. Then, O; € O; or O; D O;.

o Termination: Every correct process eventually decides.
The validity property states that (1) the decided set must include the proposal set, and (2) the decided set includes the
proposals of other processes (i.e., the decided set cannot include values which were not proposed). Consistency claims

that decided values must be comparable. Finally, termination states that all correct processes eventually decide.

2 ALGORITHM

The algorithm considers two roles: proposers and acceptors. Every process plays both roles; the separation is included

solely for the simplicity of the presentation.



Algorithm 1 Lattice Agreement Algorithm: Pseudocode of proposer P;

7:

10:
11:
12:
13:

14:
15:

16:

17:
18:

19:
20:
21:
22:
23:

24:
25:
26:

1
2
3
4:
5
6

: upon init:

Boolean active; = false

Integer ack_count; = 0

Integer nack_count; = 0

Integer active_proposal_number; = 0
Set proposed_value; = L

upon propose(Set proposal):
proposed_value; < proposal
active; < true
active_proposal_number; < active_proposal_number; + 1
ack_count; < 0
nack_count; « 0
trigger beb.broadcast((PrROPOSAL, proposed_value;, active_proposal_number;))

upon reception of (ACK, Integer proposal_number) such that proposal_number = active_proposal_number;:
ack_count; < ack_count; + 1

upon reception of (NACK, Integer proposal_number, Set value) such that proposal_number =
active_proposal_number:

proposed_value «— proposed_value U value

nack_count; < nack_count; + 1

upon nack_count; > 0 and ack_count; + nack_count; > f + 1 and active; = true:
active_proposal_number; « active_proposal_number; + 1
ack_count; «— 0
nack_count; < 0
trigger beb.broadcast({(PROPOSAL, proposed_value;, active_proposal_number;))

upon ack_count; > f + 1 and active; = true:
trigger decide(proposed_value;)
active; «— false

Algorithm 2 Lattice Agreement Algorithm: Pseudocode of acceptor P;

1:
2:

3:

upon init:

Set accepted_value; = L
upon reception of (PROPOSAL, Set proposed_value, Integer proposal_number) from proposer P; such that
accepted_value; C proposed_value:

accepted_value; < proposed_value

send (ACK, proposal_number) to P;

: upon reception of (PROPOSAL, Set proposed_value, Integer proposal_number) from proposer P; such that

accepted_value; ¢ proposed_value:
accepted_value; < accepted_value; U proposed_value
send (NACK, proposal_number, accepted_value;) to P;




	1 System Model & Preliminaries
	2 Algorithm

